On-Ice Acceleration Technique: How to Get a Leg Up on the Competition

Share with the hockey world...Email this to someonePrint this pageShare on Facebook0Tweet about this on TwitterShare on LinkedIn0Share on Google+0Pin on Pinterest0Share on Tumblr0Share on Reddit0



On-Ice Acceleration Technique: How to Get a Leg Up on the Competition


We’re going to get into a recent study which looks at differences in acceleration techniques between high-caliber and low-caliber ice hockey players. But first, a little background:

Forward skating acceleration can be crucial to a player’s success on the ice. Players with faster starts are more likely to create beneficial opportunities for their team that contribute to winning. For example, players who excel at acceleration are more likely to win races to the puck, outmaneuver their opponents, and achieve tactical separation from defensive players [1].

Skating sprint starts are very different from off-ice sprint starts; greater concurrent hip abduction, external rotation and extension are typically present with skating acceleration as compared to off ice sprint starts [3, 4, 7]. There are clear differences in acceleration strategies between elite and sub-elite hockey players; in fact, the authors of one study could correctly classify 83% of acceleration strides by player skill level [2].

The Study

Renaud et al. recently looked at differences between forward-skating acceleration techniques between high-caliber and low-caliber male ice hockey players. Here’s what the authors found [1]:

High-caliber ice hockey players spent less time in double-support phase (i.e. with both feet on the ice) and had faster stride rates than low-caliber players.

These findings coincide with early research from Marino and colleagues in 1983 [10]. They discovered that a high rate of acceleration in a front-style skating start included a high stride rate and short single support periods [10]. They also found that high acceleration rates were associated with significant forward lean at the point of touchdown of the recovery skate, and placement of the recovery foot below the hip of the recovery leg at the end of the single support period [10].


Both high-caliber and low-caliber players lowered their vertical center of mass (CoM) on the first stride. Low-caliber skaters remained vertically lower relative to their start stance whereas the high-caliber skaters increased their vertical CoM for the rest of the acceleration. High-caliber skaters also exhibited higher vertical accelerations and velocities.

This data coincides with previous research in off-ice acceleration, suggesting that vertical forces contribute to off-ice acceleration capabilities [7-9].


High-caliber players exhibited higher on-ice knee flexion and ankle dorsiflexion angles throughout the acceleration, compared with low-caliber players.

Albeit done on a skating treadmill, previous research observed high-caliber skaters being more flexed at the hip and knee, and more dorsiflexed at the foot–ankle throughout support [5]. This makes sense because greater hip and the knee flexion angles are purported to result in greater force application during on-ice propulsion due to greater extension velocities during the ice-contact phase of a skating stride [6].



Overall, high-caliber skaters had greater accelerations and exhibited  larger overall forward velocity during the first four strides of forward-forward skating, compared with low-caliber skaters. High-caliber skaters displayed higher stride rates, higher vertical CoM velocity, and shorter double-support times during the ‘‘running’’ start steps that may have contributed to their greater forward acceleration. The differences noted cannot be attributed to leg power discrepancies, as both groups had similar off-ice long jump distances. In contrast to over ground sprint start kinematic technique, greater concurrent hip abduction, external rotation and extension seems to be essential for skate-to-ice push-off orientation needed for on-ice skating propulsion.

Practical Implications

Gaining stability, strength, and movement capabilities in athletic positions similar to those experienced during skating acceleration, and strengthening muscles that are heavy contributors to skating acceleration, may facilitate sport-specific increases in force production that translate positively to on-ice acceleration capabilities. These athletic positions should incorporate substantial ankle dorsiflexion, and knee and hip flexion angles. Muscle contributors to hip adduction/abduction/extension, and knee extension may warrant particular strengthening consideration to enhance on-ice acceleration rates. These muscle groups primarily include the glutes, hip adductors, hip abductors, quadriceps, and hamstrings. Focusing on hip adductor strength is of primary importance, not because of its benefit for skating acceleration, but moreseo because of its impact on injury risk. Lack of absolute hip adduction strength and/or lack of hip adduction relative to hip abduction strength, may increase risk for groin strains [11-16].

Related: The Impact of Ankle Motion on Ice Hockey Performance



Written by Adam Virgile / @AvSportsSci

Special to HockeyClan





In Case You Missed It… Early Sport Specialization Series

Part 1: A review of the research investigating the true odds of becoming a collegiate or professional athlete.

Part 2: Whether or not early sport specialization leads to long-term athletic success.

Part 3: How early sport specialization increases injury risk and can lead to athlete burnout.

Part 4: 5 simple strategies to prevent athlete burnout.

Part 5: Evidence-based sport volume recommendations for youth athletes.

Part 6: How organized youth sport affects family dynamics.


Want to write your own “Player’s Blog?” Check out some of our member’s stories — in their own words! Tell us what makes ice hockey the greatest game on ice! Send us your stories and photos!


HockeyClan continues to upgrade its apps to benefit their growing hockey community.

Want to write about hockey? Join the HockeyClan community! While you are here visiting Rate Rinks! You can rate every rink you have ever been to based on the most important criteria. Interested in doing your own Player’s Blog? Send your hockey story to us at main@hockeyclan.com

Find your internship or career at HockeyClan

Share with the hockey world...Email this to someonePrint this pageShare on Facebook0Tweet about this on TwitterShare on LinkedIn0Share on Google+0Pin on Pinterest0Share on Tumblr0Share on Reddit0
Skip to toolbar